Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1.

نویسندگان

  • Dong Wook Choi
  • Yu-Mi Seo
  • Eun-A Kim
  • Ki Sa Sung
  • Jang Won Ahn
  • Sang-Joon Park
  • Seung-Rock Lee
  • Cheol Yong Choi
چکیده

Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the nuclear protein kinase family, which induces both p53- and CtBP-mediated apoptosis. Levels of HIPK2 were increased by UV irradiation and cisplatin treatment, thereby implying the degradation of HIPK2 in cells under normal conditions. Here, we indicate that HIPK2 is ubiquitinated and degraded by the WD40-repeat/SOCS box protein WSB-1, a process that is blocked under DNA damage conditions. Yeast two-hybrid screening was conducted to identify the proteins that interact with HIPK2. WSB-1, an E3 ubiquitin ligase, was characterized as an HIPK2-interacting protein. The coexpression of WSB-1 resulted in the degradation of HIPK2 via its C-terminal region. Domain analysis of WSB-1 showed that WD40-repeats and the SOCS box were required for its interaction with and degradation of HIPK2, respectively. In support of the degradation of HIPK2 by WSB-1, HIPK2 was polyubiquitinated by WSB-1 in vitro and in vivo. The knockdown of endogenous WSB-1 with the expression of short hairpin RNA against WSB-1 increases the stability of endogenous HIPK2 and resulted in the accumulation of HIPK2. The ubiquitination and degradation of HIPK2 by WSB-1 was inhibited completely via the administration of DNA damage reagents, including Adriamycin and cisplatin. These findings effectively illustrate the regulatory mechanisms by which HIPK2 is maintained at a low level, by WSB-1 in cells under normal conditions, and stabilized by genotoxic stresses.

منابع مشابه

Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling.

Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabiliz...

متن کامل

RACK1 (receptor for activated C-kinase 1) interacts with FBW2 (F-box and WD-repeat domain-containing 2) to up-regulate GCM1 (glial cell missing 1) stability and placental cell migration and invasion.

GCM1 (glial cell missing 1) is a short-lived transcription factor essential for placental development. The F-box protein, FBW2 (F-box and WD-repeat domain-containing 2), which contains five WD (tryptophan-aspartate) repeats, recognizes GCM1 and mediates its ubiquitination via the SCFFBW2 E3 ligase complex. Although the interaction between GCM1 and FBW2 is facilitated by GCM1 phosphorylation, it...

متن کامل

Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation.

The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling via a pathway involving TAK1 (transforming growth factor-beta-activated kinase 1), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK directly binds to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, and induces its ubiquitination and proteasome-dependent de...

متن کامل

Twenty proteins containing a C-terminal SOCS box form five structural classes.

The four members of the recently identified suppressor of cytokines signaling family (SOCS-1, SOCS-2, SOCS-3, and CIS, where CIS is cytokine-inducible SH2-containing protein) appear, by various means, to negatively regulate cytokine signal transduction. Structurally, the SOCS proteins are composed of an N-terminal region of variable length and amino acid composition, a central SH2 domain, and a...

متن کامل

SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein.

Circadian rhythms are controlled by the periodic accumulation of Period proteins, which act as transcriptional repressors of Clock-dependent genes. Period genes are themselves Clock targets, thereby establishing a negative transcriptional feedback circuit controlling circadian periodicity. Previous data have implicated the CK1epsilon isolog Doubletime (Dbt) and the F-box protein Slimb in the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 8  شماره 

صفحات  -

تاریخ انتشار 2008